BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

Introduction.

ANY experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to form a judgment as to the statistical constants of the population to which the experiments belong. In a great number of cases the question finally turns on the value of a mean, either directly, or as the mean difference between the two quantities.

If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty:—(1) owing to the "error of random sampling" the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals. It is usual, however, to assume a normal distribution, because, in a very large number of cases, this gives an approximation so close that a small sample will give no real information as to the manner in which the population deviates from normality: since some law of distribution must be assumed it is better to work with a curve whose area and ordinates are tabled, and whose properties are well known. This assumption is accordingly made in the present paper, so that its conclusions are not strictly applicable to populations known not to be normally distributed; yet it appears probable that the deviation from normality must be very extreme to lead to serious error. We are concerned here solely with the first of these two sources of uncertainty.

The usual method of determining the probability that the mean of the population lies within a given distance of the mean of the sample, is to assume a normal distribution about the mean of the sample with a standard deviation equal to s/\sqrt{n} , where s is the standard deviation of the sample, and to use the tables of the probability integral.

Biometrika vı